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We present a detailed description of equivalent crystal theory focusing on its application

to the study of surfar.e structure. While the emphasis is in the structure of the algorithm

and its computational aspects, we also present a comprehensive discussion on the calculation

of surface energies of metallic systems with equivalent crystal theory and other approaches.

Our results are compared to experiment and other semiempirical as well as first-principles

calcualtions for a variety of fcc and bcc metals.



I. INTRODUCTION

Computational material science or the theory of materials has recently come of age.

Calculation of properties of real materials at the atomic level such as grain boundary or dis-

location energies or the dynamics thereof, which in the recent past have seemed intractable,

now have some hope for realistic modelling. An even more startling assertion is that mod-

elling of tribological phenomena is also now feasible. Tribology is a particularly difficult

field for theoretical studies at the atomic level because of the different possible materials in

contact under high loads, often with high degrees of disorder, but as Landman et al [1] have

shown, a great deal of progress has been made in approaching problems of practical interest.

More generally, there has been tremendous progress in several areas in the field of material

science, due largely to the advent of powerful theoretical techniques and a rapid growth

in computational capabilities. As a result, the need for a 'theoretical laboratory' where

materials can be modelled, and their properties studied, at will, has become a fundamental

part of any industrial or scientific endeavour. In order to satisfy this need, however, it

is of essential importance that the tools needed to implement such goal have to fullfill a

number of conditions which not necessarily complement each other. On the one hand,

physical accuracy is of paramount importance. In this sense, first-principles approaches are

impressively successful, in that accurate agreement with experiment was obtained in several

instances (band structure, transport and magnetic properties of solids, etc.). Properties

of interest to the material scientist, however, are generally related to 'defects' in atomic

structure which involve a partial loss of periodicity, and thus requiring calculations over a

large number of atoms (dislocations, grain boundaries, interfaces between different materials,

etc.). This poses an almost insurmountable obstacle, in that current technology prevents

ab-initio calculations to have an acceptable level of computational efficiency to deal with

problems dealing with a large number of atoms. For example, it is only recently became

possible to predict which simple structure (fcc, bcc, hcp) for an elemental metal has the

lowest energy [2].
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On the other hand, in order to be able to perform realistic modelling within the con-

straints of the current available computer technology, the use of pair-potentials (two-body

forces) offers an efiicient alternative, but with a great deal of loss of physical accuracy,

making them unreliable for predicting real material properties.

In the last decade, due to the obvious need to fill the gap between the two alterna-

tives mentioned above, the use of semiempirical approaches emerged as the intermediate

choice: based on sound physical concepts, they provide generally accurate results and with

considerable computational ef_ciency over first-principles approaches. In general, semiem-

pirical approaches tackle the many-body problem by determining a functional form for the

cohesive energy based on some physical model, including some parameters determined by

fitting to experimental properties. Once these constants are determined, the form is used

to calculate the energy or dynamic behavior or other properties of interest, such as defect

energies. While sometimes oversimplifying the problem, by the global treatment that is

made of the electronic structure of the solid, the semiempirical approaches have proven to

be extremeUy effective in accomplishing its goals. A review of recent efforts dealing with cal-

culation of properties of materials using semiempirical techniques shows that three methods

dominate the research activity in this area: effective medium theory [3] (EMT), embedded

atom method [4] (EAM) and equivalent crystal theory [5](ECT).

In this paper, we concentrate on equivalent crystal theory for the study of surface prop-

erties. More specifically, we present a detailed application of equivalent crystal theory to the

calculation of surface energies and surface relaxations. Some previous studies [5,6] indicate

that ECT provides, in general, a very good description of such surface properties, based on

comparison with available experimental data. Most impressively, ECT was recently used to

provide a simple description of the phenomenon of avalanche in adhesion [7]: at a certain

separation , two approaching surfaces snap together, the critical distance for such event

depending on the thickness of the metals in contact. This example demonstrates that cal-

culational methods such as ECT enable examination of phenomena which are di_cult to

observe experimentally. Other recent application of ECT to surface phenomena include sur-



fare reconstruction [8], modelling of atomic force microscopy [9], friction [10] and energetics

of steps and kinks in metallic surfar.es [11].

We organize this paper as follows: Section 2 provides a brief summary of ECT while

Section 3 focuses on the application of the formalism to the calculation of surfar.e energies

and relaxations. Section 4 reviews the results obtained for a variety of metallic surfar.es. We

devote Section 5 to the discussion of advantages, limitations and general considerations for

future applications of ECT for the computer modelling of materials and their properties.
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II. EQUIVALENT CRYSTAL THEORY

Equivalent crystal theory [5] is based on an exact relationship between the total energy

and atomic locations and applies to surfaces and defects in both simple and transition

metals as well as in covalent solids. Lattice defects and surface energies are determined via

perturbation theory on a fictitious, equivalent single crystal whose lattice constant is chosen

to minimize the perturbation. Ferrante, Rose and Smith [12] found that the cohesive energy

of metals and covalent solids as a function of varying the lattice parameter isotropically

could be represented by a simple relationship,

E= EcE*(r*) (1)

where Ec is the cohesive energy and E*(r*) is a universal shape for the curve, which can be

well represented by the Rydberg function

E'(r') = -(1 + r*)e-'" (2)

and

r --rWSE,. _ (3)
l

and where r is the Wigner-Seitz radius, rwsE is the corresponding equilibrium value and I

is given by

Ev ) 1/_
• rWSEl= (d2E /-_r2)

which can also be written in terms of known experimental quantities as

where B is the bulk modulus.

(4)

Be (5)12xBrwsE '

The energy of the equivalent crystal, as a function of its

lattice constant, can therefore be given by the universal binding energy relation (UBER)

given by eq.(1). Fig. 1 displays total energy curves as a function of interatomic spacings for

bimetallic adhesion and cohesion in metals as well as the UBER.



Let's consider a certain, arbitrary defect. Let e be the total energy to form the defect or

surface, then

i

where _i is the contribution from an atom i close to the defect or surface. ECT is based on

the concept that there exists, for each atom i, a certain perfect, equivalent crystal with its

lattice parameter fixed at a value so that the energy of atom i in the equivalent crystal is also

_i. This equivalent crystal differs from the actual ground-state crystal only in that its lattice

constant may be different from the ground-state value. We compute el via perturbation

theory, where the perturbation arises from the difference in the ion core electronic potentials

of the actual defect solid and those of the effective bulk single crystal.

For the sake of simplicity, the formal perturbation series is approximated by simple,

analytic forms which contain a few parameters, which can be calculated from experimental

results or first-principles calculations [5]. Our simplified perturbation series for _i is of the

form

where

(7)

F" [a'] = 1 - (1 + a')e-'" (8)

EcF'(a*) uses the UBER described above to determine the change in energy of the equiv-

alent crystal above the ground state value. In this expression, we distinguish four different

contributions to the energy of atom i and thus, the existence of four different equivalent

crystals which have to be determined for each atom i.

The first term, F* [a_(i)], contributes when average neighbor distances are altered via

defect or surface formation. It can be thought of as representing local atom density changes.

In most cases, this 'volume' term is the leading contribution to ei and in the case of isotropic

volume deformations, it gives ei to the accuracy of the UBER. The value of a_(i), the



lattice parameter of the first equivalent crystal associated with atom i, is chosen so that

the perturbation (the difference in potentials between the solid containing the defect and

its bulk, ground-state equivalent crystal) vanishes. Within the framework of ECT, this

requirement translates into the following condition from which a_(i) is determined:

NR_e-_n_ + MP_e-(_+'_) R2 - __, _e -[_+s(_i)]_ = 0 (9)
defect

where the sum over the defect crystal or surface is over all neighbors within second-neighbor

(NNN) distance. G is the actual distance between atom i and a neighbor atom j, N and

M are the number of nearest-neighbor (NN) and next-nearest-neighbors, respectively, of the

equivalent crystal (12 and 6 for fcc, 8 and 6 for bcc) and p, a and _ are parameters known

for each atomic species. Table 1 displays the values of these parameters for the fcc elements

used in this work (see Ref. [5] for a complete list). S(rj) is a screening function and R1

and R2 are the NN and NNN distances in the equivalent crystal. The equivalent lattice

parameter, al, is thus related to the scaled quantity a_ via

a_--( R1 rwsE)/l, (10)

where rwxE is the equilibrium Wigner-Seitz radius, I is a scaling length and c is the ratio

between the equilibrium lattice constant and rwsE. Thus, the determination of the energy

for an ion, in or near a defect, amounts to solving a simple transcendental equation for the

equivalent lattice parameter.

The higher-order terms are relevant for the case of anisotropic deformations. The linear

independence attributed to these four terms is consistent with the limit of small pertur-

bations which we assume for the formulation of ECT. The second term, E* [ai(i,j)], is a

two-body term which accounts for the increase in energy when NN bonds are compressed

below their equilibrium value. This effect is also modeled with an equivalent crystal, whose

lattice parameter is obtained by solving a perturbation equation given by

NR_e -"n' - Nrge -_'° + A2rg __,(R._ - ro)e -'(Ri-,.) = O,
J

(11)
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where _ -- 4a for the metals used in this work, and R1 is the NN distance of the equivalent

crystal associated with the deviation of NN bond length Rj from to, and ro is the bulk

NN distance at whatever pressure the solid is maintained (generally, ro is the ground-state,

zero-pressure value). A2 is a constant determined for each metal: for fcc metals A2 is given

by

a, A2/D = 1/6v/2 (12)

and

a,A2/D = 1/4v/3

for bcc n.etals. The quantity D is given by

D - Ne -='° (at0 - p)

(13)

(14)

lattice parameter is then

(17)o;=

(see Table 1). The scaled equivalent lattice parameter is then

Thethird term,F" [";(i,S,k)] _countsfor theinCr_.._in energythat ari_ whe-bond

angles deviate from their equilibrium values of the undistorted single crystal. This is a

three-body term and the equivalent lattice parameter associated with this effect is obtained

from the perturbation equation

NR_e -''R' - Nrmoe-°'° -I- A3_e -a(R_+R_-2',o) sin(0jk - O) = 0 (16)

where ,43 is a constant listed in Table 1 and 0ik is the angle between the NN distances Rj

and Rk with the atom i at the center. 0 is the equilibrium angle, 70.5 ° for bcc and 90 ° for

fcc. This term contributes only when there is a bond-angle anisotropy (0jk ¢ 0). The scaled



The fourth term, F*[a_(i,p,q)], describes fare diagonal anisotropies (see Ref. [5] for a

detailed description, for each lattice type, of the structural effect associated with this term).

The perturbation equation reads

-- dq[ e_a(R¢+Rk+Rt+p.,,,_4,o) = 0 (18)

where d is the face diagonal of the undistorted cube and A4 is a constant adjusted to

reproduce the experimental shear elastic constants (Table 1). Finally, a: = (_ - rwsE) /I.
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III. SURFACE ENERGY CALCULATION

A. Rigid surface

In this section, we illustrate the formalism described in the previous section, by pro-

viding a detailed application of ECT to the calculation of the surface energy of a metallic

surface. Before we go through the details, we first make a few considerations of general

interest regarding surface energy calculations and the simplifications introduced by certain

assumptions.

Consider a rigid surface (i.e., no interlayer relaxation): all bond lengths and angles

retain their bulk equilibrium values, thus f'(a_) = f°(a;) = f*(a:t) = 0. The surface

energy is therefore obtained by solving for the 'volume' term represented by F*(a_) only.

We note that for this case only, a single atom need be considered per plane since each site

is equivalent and only a few planes should be included since convergence to bulk values

occurs rapidly. If we consider a rigid displacement of the surface layer towards the bulk,

as is the case in most metallic surfaces, the higher-order terms become finite: some bonds

are compressed, contributing to F'(a_), the bond angles near the surface are distorted as

well as the difference between face diagonals in some cases, generating an increase of energy

via F'(a_) and F"(a:t). For the case studied in this work, these additional contributions to

ei are generally small, representing only 1% to 2 % of the total energy. However, while

these anisotropy terms are small for metals when there is no reconstruction, they play an

important role in the energetics of these defects where the differences in energy between the

rigid and relaxed configurations are also small. In what follows, we will refer to this ECT

formalism as ECT II [5].

As noted, the bond-angle and face-diagonal anisotropies are of very little interest for

the calculation of metallic surface energies. For this case only, an earlier version of ECT

[13], which we will refer to as ECT I, provides a simpler, although a bit less accurate

framework for a surface energy calculation. The second term in eq.(7) is replaced by a
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simple expression which allows for the direct calculation of the energy associated with bond-

compression effects,

N.M. (19)
n----I m----1

where No is the number of atoms in the solid, O,_n = 1 if a_ _< 0 and 0,.. = 0 otherwise,

M,_ is the number of nearest-neighbors of atom n, L,.. is the number of nearest-neighbors

of atom m or n, whichever number is smaller, and a_,_ is given by

P ./cl- rwsE (20)
l '

with

l = _/ Ec (2 0127r BrwsE '

B is the bulk modulus of the crystal, R_ is the distance between atoms m and n, cl is the

ratio of the equilibrium nearest-neighbor distance in the crystal to rwsF., and rwsE is the

equilibrium Wigner-Seitz radius. In ECT I [13], the third and fourth term of the energy

expansion (eq.(6)) are ignored. In what follows, we will list results as obtained with either

one of the two versions of ECT. Those results obtained with the full energy expansion (ECT

II) [5], will be analyzed in terms of the value of the parameter fl which dictates the 'strength'

of the bond compression term therefore playing an important role in the energetics of surface

relaxation as it will be seen that this term is mainly responsible for avoiding the collapse of

the top layers onto each other.

We now concentrate on the calculation of rigid surface energies with ECT. Each atom

in each plane is equivalent to all other atoms in the plane, therefore it is only necessary to

solve the ECT equations for a single atom in each plane and the only remaining question

is how many planes are needed for convergence. Let's assume that the planes are labeled

by an index j, j = 1, ..., b, where j = 1 indicates the surface plane and j = b denotes a

certain 'bulk' plane: a plane below which no surface effects are considered. For a single

non-equivalent atom in plane j, we write the ECT equation
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NR_Ie -°R, + MR_e-(°+_) R2 = Nj_e -_'1 + Mjr_ (°+_)'2 (22)

where N and M are the number of nearest and next-nearest neighbors, respectively, in

the perfect crystal ( N = 12, M = 6 for fcc, N = 8, M = 6 for bcc, etc.). If there is no

change in the interatomic distance between any pair of atoms, then all nearest neighbors and

next-nearest neighbors in the defect crystal are separated by the same distance (rl and r2,

respectively), therefore, the last term in eq.(9) is greatly simplified as rj = rl for the nearest

neighbors and rj = r2 for the next-nearest neighbors. Moreover, the screening function

adopts the values S(rl) = 0 and S(r2) = l/h, therefore avoiding further calculations. The

values of Nj and Mj are easy to determine for each lattice type. Table 2 indicates some values

for low index faces of fcc and bcc metals. We stress the point that all these simplifications

are a consequece of assuming a rigid lattice, otherwise, each interatomic distance should be

considered separately.

Finally, after eq.(22) is solved for all values of j, the corresponding solutions R__) are

used to evaluate the contribution to the surface energy aj:

aj = EvF*(a;), (23)

where

( R_J) /c - rwsE) (24)
l

and where F* is given by eq.(8). The right hand side of eq.(22) is a measure of the defect

(in this case, a surface). If the atom under consideration was a bulk atom in a perfect

crystal, then N i = N and Mj = M, which states the obvious fact that the equivalent crystal

coincides with the real crystal. Therefore, the quantity

Qc = Nr_e -_'_ + Mr_ e-(°+_)r2, (25)

where rl and r2 represent the equilibrium nearest- and next-nearest-neighbor distances,

respectively, can be considered as the reference magnitude for any defect. If we denote
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with Q the r. h. s. of eq.(25), we then have three possibilities for any defect: a) if Q = Qe,

as noted above, the equivalent crystal for the atom in question is the equilibrium crystal

itself, therefore, no additional calculation is necessary and that atom does not contribute any

additional energy to the total energy of the defect crystal. It should be noted that Q = Qc

does not mean that there is no defect present: it essentially means that the atom in question

finds itself in a perturbed electron density that, in average, matches the one it would find

in a perfect crystal. Therefore, we can say that the ground state of the equivalent crystal is

'degenerate', in the sense that many defects can be associated with such equivalent crystal.

This is true, of course, for any other value of Q. b) if Q > Qc, the defect represents a

situation where the electron density is higher than in the perfect crystal. The corresponding

equivalent crystal must have, as a consequence, a smaller l_ttice parameter than the perfect

crystal. Conversely, c) if Q < Q¢ then the lattice parameter of the equivalent crystal is larger

than the equilibrium value. Examples of the last two cases are, respectively, an interstitial

atom and a vacancy.

As equivalent crystal theory is based on a perturbation expansion around the equilibrium

crystal, one would expect the solutions of the ECT equation (eq.(9)) to display reasonably

small deviations from R1 = r0, the equilibrium nearest neighbor separation. As a conse-

quence, only those solutions of eq.(9) that are in the vicinity of r0 axe acceptable. Fig. 2

shows the graphical solution of Eq.(9): the curve indicates all the possible values of the 1.h.s.

of eq. (9), while the straight line indicates the measure of the defect, Q, while the dashed

line corresponds to the equilibrium value Qe- Two points are indicated in the horizontal

axis: the equilibrium nearest-neighbor distance r0, and the acceptable solution of Eq.(??).

Solutions to the left of the peak of the curve should therefore be ignored.

In conclusion, the calculation of rigid surface energies is a straightforward procedure,

which highlights the computational simplicity associated with ECT. This case is particularly

simple because it only involves the calculation of the first term in Eq.(7) (no bonds are

compressed and there are no bond-angle or face-diagonal anisotropies).
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B. Relaxed surface

Letting the planes close to the surface relax, while introducing hardly any additional

work in the calculation of the first term in eq.(7), it 'turns on' the other three contributions

to the energy. As mentioned above, the last two terms are very small and we will, for the

moment, neglect them. For the second term - the bond-compression term - we have, as

discussed above, two options: the ECT I formalism [13], which introduces a simple counting

procedure where no transcendental equation has to be solved: all that is needed is how many

bonds between the atom in question and its nearest neighbors are compressed (r < r0) and

their length. The second option, ECT II [5], while using the same ingredients than ECT

I, introduces a transcendental equation, eq.(11), in the same spirit as in eq.(9), where the

anisotropy in bond length is considered as part of the perturbation.

For small compressions, there is no quantitative difference between the two alternatives.

For larger compressions, the ECT II approach introduces an additional, adjustable parameter

(/3) which can be fitted to some property of the crystal that would provide a good description

of such limiting situations. The basic qualitative difference between the two approaches is the

fact that the ECT II approach provides a continuous contribution of the bond-compression

energy as a function of bond length, whereas the ECT I version shows a discontinuity in the

first derivative of the energy. While this is not a major drawback in modelling the defect, it

could be a disadvantage when ECT is used in association with statistical techniques, where

continuity in the derivatives of the energy could be a requirement.

Obviously, allowing the atoms in the surface region to relax, introduces the additional

complexity of including more non-equivalent atoms to the calculation, located in deeper

layers. As we will see in the following sections, this is unavoidable in the case of high-index

faces, where several planes parallel to the surface plane have to be included even before

a bulk-like environment is reached. Moreover, these cases require a careful treatment of

relaxations perpendicular and parallel to the surface plane.

Many-atom effects, which are represented in ECT by the inclusion of the three-atom

14



bond-angle anisotropy and the four-atom fac_diagonal distortion terms (see the third and

fourth term in the r.h.s, of eq.(7)) are necessary but, in the case of surface energy cal-

culations of metals, of very little relevance. As we will see below, they introduce a small

correction usually of the order of 1% of the leading term in eq.(7). That is not the case

for semiconductors, where angular anisotropies are a significant contribution to the surface

energy.

C. A simple example

For the sake of clarity, in what follows we provide a simple application to an fcc(100)

metallic surface, where only the surface plane is allowed to relax. All atoms in a given plane

are identical, therefore we only need to evaluate the contribution of one single non-equivalent

atom per plane. Moreover, only three planes have to be considered in this calculation: atoms

in the fourth plane and below find themselves in an equilibrium, bulk-like environment.

Fig. 3 shows a side view of such surface: the dots indicate atoms on the plane of the

paper and the crosses indicate atoms one plane below or above. The top plane (j = 1) is

slightly contracted, by a distance x toward the first plane below the surface (j = 2), but both

the j = 2 and j = 3 planes, as well as any other plane below, are at equilibrium positions.

The rigid interplanar spacing is d = ae/2 (ae is the equilibrium lattice parameter), therefore,

the distance between j = 1 and j = 2 is a,/2 - x. Following the labeling of Fig. 3 we write

the ECT equations for the atoms A1, B1 and C1, in terms of the distances r,_n between

atoms m and n:

12R_e -_RI + 6P_e-(_+_ )R2 =

4_lA_e -arA1A_ q-4rPA_B_ e-a'als_ + "=/irI_AAIA3e--(a+_)rAIAs -{-

 ,c,e (j = 1) (26)

(j = 2) (27)
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12R_e -°a' + 6R_e-(°+D a2 =

12_c2 e -_cIc2 + 5_c3 e -(_+_)'c_c3 + _IA, e-(a+_)'czA_ (j = 3) (2s)

where

v_
rAIA _ = rBIB_ -- rCaC2 = ro "- -_-ae

(29)

rAIBI = rBiA1 -- rz -- _- z 2 (30)

rAIA3 -- rBIB3 = rcic3 = "SO"- _Ze
(31)

and

rA2C, = rc,,1 = S. = a_ --*. (32)

Eqs.(26)-(28) are then solved, for each value of., for the latticeparameter a(_) of the

corresponding equivalent crystal:

a_)(z) = _J)= V_RI j) j = 1,2,3. (33)

Finally, the 'volume' contribution to the surface energy is

3 3

O"1 = _ 0"_j)-" EG _ F'(a;,j(x))

j=l j=l

where

ald= 7(--_'---rW$E),

(34)

(3_)

and F ° is given by eq.(8).

We now compute the bond length anisotropy contribution to the surface energ3". Within

the ECT I framework, the contribution is given by eq.(19):

. = 1 . .

a.EcTz= Eo(-_F(,u,s,)+ _F ("s,_,))
(36)
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where

rz/Cl -- rWSE (37)
a*A,B,= a*BIA = I

as long as x > 0. If x < 0 then a2EcTz = O.

In order to compute the bond-compression contribution within the ECT II framework,

we need to solve the following transcendental equation in order to find the equivalent crystals

(for atoms A1 and B1) associated with this defect:

12R_e -°R' - 12_e -_'° + 4A2_(r_ - ro)e-a('-'°) = 0 (atom Aa) (38)

The equation for atom B1, for this particular example, is identical to eq.(38) (reflecting the

identity a'B,A, = a*A,B, for the ECT I case). Eq.(38) is then solved with respect to R1 and

the energy contribution is then

a_VTII= EvF*(a;(x)) (39)

where a_ is given by eq.(15).

The third term in eq.(7) deals with bond-angle anisotropies. Contributions to a3 come

from atoms for which the angle between its nearest neighbors departs from its equilibrium

value 00 (00 = 90 ° for fcc). Following the convention described in ref. [5] that says that if an

atom is missing one or more nearest-neighbors, then F*(a;(i, j, k)) -- 0 for that atom, then

the atoms in the top layer do not contribute to a3. The only contribution then arises from

the atoms in the first layer below the surface (j = 2), for which we solve the transcendental

equation (see eq.(16))

12R_e -'_n, - 12_e -_''o + A3_e -''('_-'°) sin [8 - 8o[ = 0 (40)

where

+ ro- }0 = cos -1 2r_ro "

Eq.(40) is solved with respect to R1 and the bond-angle contribution is then

(41)
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a_ cTII = 4EcF'(a;(x)), (42)

where a_ is given by eq.(17).

For the particular case of the fcc (100) face, the fourth term vanishes, as the diagonals

associated with each atom in the layer j --- 2 do not change relative to each other, although

the length of each diagonal is different from the equilibrium value.

Summarizing, the surface energy of an fcc(100) face, where only the top layer is allowed

to relax is given by

3 1a EcTz = Ec{_F*(a_j(x)) + F'(a_lsl)} (43)
j=l

where a_,.i(x ) and a_lB_ are given by eqs.(35) and (37), respectively. Within the ECT II

formalism, a is given by

3

a EcTH = Ec{_, F*(a;,.i(x)) + F*(a;(x)) + 4F*(a;(x))}
j=l

(44)

where a;(x) and a_(x) are given by eqs.(15) and (17), respectively.
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IV. RESULTS

ECT, in any of its two versions, has been applied with a great deal of success to sev-

eral problems involving surface phenomena [5-10]. In the case of surface energies, ECT is

particularly successful as it gives a very good approximation to the currently accepted exper-

imental and first-principles values, therefore making it a good candidate for predicting such

quantity in other cases. We have carried out an extensive calculation of surface energies of

fully relaxed (but unreconstructed) surfaces of several fcc and bcc metals, and for a variety

of choices for the Miller indices, ranging from (111) to (771) [6]. Although some of these

surfaces are known to reconstruct, we did not look for this effect in our calculations with

the sole purpose of generating a large data set of surface energy values from which patterns

can be extracted, by studying the dependence of surface energy on several variables (Miller

indeces, cohesive energy, roughness [14], borocity [15], lattice structure, etc.).

In the previous section, we repeatedly mentioned the fact that the many-body

anisotropies (bond-angle, face-diagonal) that appear in the ECT II formalism are not of

great relevance for the calculation of surface energies. This point is proven by the results

displayed in Table 3 where we show some results for low- and high-index faces, both rigid

and fully relaxed, for the surface energy and the different contributions arising from the

ECT II expansion (eq.(7)). Table 4 proves another point made in the previous section: in

general, both ECT I and ECT II give results of comparable quality in the case of surface

energies.

Tables 5 and 6 display an extensive set of results for fcc and bcc metals, where we

compare with several experimental estimates as well as the surface energies obtained by

other approaches. First, we examine the quality of our results by comparison with first-

principles calculations. First-principles values do not suffer from the ambiguities in surface

geometry and cleanliness as the difficult to obtain experimental values. The surface energy

for polycrystalline solids is usually assumed to be close to that of the most dense (less rough)

surface, therefore we discuss results for the densest packed fcc (111) planes. We extract our
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values from Tables 5 and 6, for direct comparison with other methods for which we could

find surface energies, where the first number will be the ECT II value, 0, the second EAM

[4,19], _, the third Finnis-Sinclair [16], [M, and the last first-principles [17], {} (all values

are in ergs/cm_): Cu (1758), [1170,1184], {2100}; Ag (1221), [620,655], [[620]], {1221}; Vd

(1696), [1220,1050], {1640}. We can see that in all cases ECT II agrees extremelly well with

first-principles results, whereas Finnis-Sinclair and EAM results can be as much as 50 %

lOW.

The next comparison made is with the planar a_isotropy of the surface energy as ob-

tained by different approaches. There are arguments [17,18] for expecting the variation in

the surface energy from plane to plane to be smaller than expected from variations in surface

roughness. For example, as mentioned earlier, electron smoothing in order to reduce the ki-

netic energy could reduce the variation in surface energy expected from roughness variations.

For this discussion, we reproduce results presented by Methfessel et al [17] (table 7) with

additional analysis, updated values for ECT from the present paper, and more recent EAM

results [19]. First we note that when we examine the anisotropy ratios "Yl10-111 - crl10/_r111

and "_100-ul = _10o/_111, where _hkt is the surface energy of the face (hkl), as well as

_/lo0-110 = a10o/_11o, Methfessel et al's assertion that the other semi-empirical methods,

EAM and Finnis-Sinclair, show a smaller surface anisotropy than ECT is not substantiated.

The surface anisotropies predicted by the three methods are actually quite close and all

three predict a small variation between the values of _100-110.

A simple modification of ECT II can bring the surface anisotropy much closer to the

Methfessel et al values [17]. As we stated earlier, ECT introduces a screening function for

next and higher order neighbors [5] based on the bulk screening length. The functional

form for this screening is assumed to be an exponential which although reasonable, is ad

hoc. Assuming no screening (Table 8) for both Pd and Ag, the surface anisotropy variation

can be brought much more in line with the values reported in ref. [17], without affecting

the outstanding agreement for the surface energies for the (111) surfaces. We note that

such an assignment of screening length is directly comparable to that used in EAM. We
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further note that there is not at present a consistent comparison between first-principles

and semiempirical methods. Limiting our example to ECT, the primary input parameters

for the method are the experimental values for the cohesive energy, the zero-pressure bulk

modulus, the equilibrium lattice parameter and the _cy formation energy. In order

to make a consistent comparison it would be necessary to use input values from the first-

principles calculations for determination of the fitting parameters in each method.

Next we address the bcc structure metals. Our values for the ratios _'1o0-_1o - _100/_110

and _f111-110 -- _111/_110 for W and Fe are, respectively, _100-110 -- 1.78, 1.97 and _111-110 -"

1.32,1.40. The values of Methfessel et al [17] and Finnis-Sinclair [16] for _/100-11o are respec-

tively, 1.21 and 1.17 for Nb and 1.13 and 1.15 for Mo. Here, the assertion in ref. [17] is more

accurate, however we note that for the only first-principles comparisons that we have found

for a bcc system, that is, W, Fe (100), the ECT value of 5808 ergs/cm 2 as compared to

5100 ergs/cm 2 for W (100) [20] (an overestimate of 14 %) and 3353 ergs/cm 2 as compared

to 3100 ergs/cm 2 for Fe (100) [21] (an overestimate of 8 %) are in quite good agreement.

Although the surface anisotropy seems high in this case, there is as yet no complete test of

the bcc systems which warrant a definite conclusion. As mentioned above, we have shown

that a simple modification of ECT can be made which corrects for the seeming discrepancy

in surface anisotropy while maintaining the simplicity of the method and the highly accurate

predictions for the surface energies of the densest packed planes.

Simple bond-cutting arguments have been used to explain the face dependence of the

surface energy, which could be thought of as the energy cost for cutting the bonds to one

nearest-neighbor times the number of removed NN atoms in the process of surface formation.

ECT provides a simple qualitative and quantitative description of this process: if we consider

a rigid surface (so that second-order effects due to anisotropies are not included), one would

reasonably expect the atoms in the top layers to be mostly affected by the creation of the

surface. For example, for fcc (100) planes, the contribution of an atom in the surface plane

accounts for most of the surface energy, while atoms in the second layer contribute less than

1%. The ECT equation for determining the lattice parameter of the equivalent crystal
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associated with an atom on the surface is (see eq.(22))

N_ -_RI + MR_-(°+_ )R_= N,_e-°'_ + M,g_-_+_ _'2, (45)

where N1 and M1 represent the number of NN and NNN of the atom on the surface (thus,

N - N1 and M- M1 are the number of NN and NNN bonds broken in the process of creating

the surface). R1 and R2 are the NN and NNN distances in the equivalent crystal of lattice

parameter aEQ. This is a transcendental equation for aEQ and although it cannot be solved

analytically, it can be shown that a simple linear approximation gives a result for aEQ which

is only 10 % off the exact value. This approximation entails a linear dependence on the

number of broken bonds, N - N1 and M - M1. The dependence of the surface energy on

these quantities is given by the Rydberg function, thus establishing a relationship between

surface energy, cohesive energy and the number of NN and NNN broken bonds,

_._,_ = Ec{1 - (1 + a')_-°'}. (46)

where a" is the scaled lattice paraznater of the equivalent crystal:

a* = q (aEQ -- ae) (47)
I

The previous analysis provides a simple explanation for the differences in surface energy

between different planes. Nevertheless, the surface energies obtained with ECT compare very

well with experiment in all cases, as shown in Tables 5 and 6 where the ECT predictions,

as well as other theoretical and experimental figures are displayed for fcc (Table 5) and bcc

(Table 6) metals.

We once again note that the surfaces energies displayed are for relaxed but unrecon-

structed surfaces. This is obviously unrealistic for high-index faces, or even cases like Au

(100), but it provides a rough idea of the dependence of the surface energy on the roughness

of the surface. A comparison of the results in Table 5 (obtained with ECT II allowing only

for planar relaxations in a direction perpendicular to the surface plane) and the surface

energies quoted in Table 4 (which also include atomic relaxations parallel to the surface
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plane) shows that adding this degree of freedom in the calculation, while introducing a sig-

nificant change in terms of the number of variables with respect to which the energy has to

be minized, introduces little or no change in the values of the surface energy.
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V. CONCLUSIONS

Equivalent crystal theory, like other semiempirical techniques, is supposed to narrow the

gap between formal first-principles calculations and empirical approaches. To achieve this

goal, ECT provides a simple operational procedure with minimal computational complexity.

At the same time, it has a strong foundation on perturbation theory. In the case of surface

phenomena, ECT is an excellent tool for describing the different aspects of surface structure

and, as we intended to show in this work, allows for simple visualization of the relevant

features.

It is an encouraging fact that, in spite of the reasonable success obtained in the ap-

plications studied since the inception of this method, it is amenable to extensions in a

straightforward fashion: a quick analysis of the perturbation series expansion provides clear

indication of how the method can be perfected to deal with more complex situations. This

flexibility is a necessary condition for any method that attempts to describe, in one single

scheme, all possible systems.
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Element p l a _ 10-2A3/D
A] 4 0.336 2.105 0.944 7.822

Cu 6 0.272 2.935 0.765 5.784

Ag 8 0.269 3.337 0.756 5.390
Au 10 0.236 4.339 0.663 4.047

Ni 6 0.270 3.015 0.759 7.382

Pd 8 0.237 3.612 0.666 5.242

Pt I0 0.237 4.535 0.666 5.789

Fe 6 0.277 3.124 0.770 9.183

W I0 0.274 4.232 0.770 12.03

10-1A4/D
2.104

2.530

2.285

1.673

2.793

2.012

1.727

1.887

1.497

10-4D AE ae

591.4 3.34 4.05

99.74 3.50 3.615

12.90 2.96 4.086

1.127 3.78 4.078

100.1 4.435 3.524

11.25 3.94 3.89

1.071 5.85 3.92
60.62 4.29 2.86
1.179 8.66 3.16

Table I: Computed constants and experimental input for ECT ]I. The constant p is 2n - 2,

where n is the atomic principal quantum number, l (in _) is a screening parameter (see

text). The constants A3 and A4 are dimensionless. Ec (in eV) is the cohesive energy and

ae (in _) is the equgibrinm lattice constant.

j (hk0 fcc bcc
N_ Mj Nj Mj

(100) 8 5 4 5

1 (110) 7 4 6 4
(111) 9 3 4 3

(100) 12 5 8 5

2 (110) 11 4 8 6

(111) 12 6 7 3

(100) 12 6 8 6

3 (110) 12 6 8 6
(111) 12 6 7 6

Table2 : Number of nearest-neighbors (Nj) and next-nearest-neighbors (Mi) of an atom in

plane j (j -- 1 is the surface plane) for (hid) fcc and bcc surfaces.
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hkl

111 1813.90

100 2362.26
110 2443.38

Cu 311 2432.55
331 2306.33

210 2617.94
211 2288.15

310 2598.22

111 1752.92
100 2303.30

110 2382.47
Pd 311 2368.39

331 2242.51
210 2553.10
211 2223.16

310 2533.69

110 1778.77
100 3447.37

211 2228.52

Fe 310 2978.04
111 2477.70

210 2668.29
311 2685.95

331 2139.92

Rigid Relaxed _1

1757.63

2301.70

2365.87

2363.21

2237.46

2543.69

2227.98

2528.68

1695.55

2240.53

2303.44

2297.26

2172.17

2477.53

2157.22

2462.54

1703.92

3353.12

2131.37

2866.88

2390.38

2583.46

2578.01

2050.28

a2 a3 _4

1735.83 20.48 0.00 1.32

2276.59 22.61 2.51 0.00

2335.63 28.32 0.00 1.92

2335.13 25.72 1.06 1.30

2210.38 24.88 0.04 2.16

2514.30 27.31 0.32 1.75

2203.65 22.03 0.57 1.72

2500.59 26.06 0.90 1.13

1673.79 20.98 0.00 0.78

2215.23 23.26 2.04 0.00

2273.40 28.87 0.00 1.17

2269.23 26.29 0.93 0.81

2145.44 25.34 0.03 1.35

2448.79 27.41 0.26 1.07

2131.50 24.02 0.58 1.12

2434.30 26.79 0.70 0.75

1671.38 28.43 2.88 1.21

3307.87 39.89 5.36 0.00

2091.82 36.28 0.32 2.95

2798.64 57.92 8.10 2.22

2355.99 31.82 0.01 2.56

2540.82 36.62 4.31 1.71

2529.75 43.93 2.16 2.17

2005.81 37.39 3.72 3.35

Table 3 :Rigid and relaxed surface energies (in erg/cm 2) for Cu, Pd,

(j = 1, ...,4) denotes the contribution to the surface energy from the

expansion.

and Fe surfaces. _j

j term in the ECT

Surface Rigid ECT I ECT II

A_l!O) 1493 1424 1404

..N_(_:)) 3407 3330 33062618 2559 254O

Tsble4: Surface energies (in erg/cm 2) of the rigid and relaxed (210) surfaces of AI, Ni and

Cu computed with ECT I and II.
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Farce

Exp.

(111)

(lOO)

(110)

(311)

(331)

(21o)

(211)

(310)

A1

1140125]

1180125]
1200124]

856[6]

120916]

128616]

1100 [16]

959[27]

126316]

118016]

140716]

999[27]

Cu

1780125]
1770125]
1790124]

175816]

1170[ 4]

1184119]

2100123]

839[26]

2302[6]

1280[ 4]

1367119]

2300121]

892[26]

2366[6]

1400[ 4]

1514119]

957[26]

1471127]

2363[6]

1494119]

961126]

2237[6]

1460119]

234416]
162o[19]
1544127]

1240125]

1320125]

1340124]

122116]

1210117]

620[ 4]

655119]

620[29]

158316]
1210117]
705[4]
795119]
1650121]
1300128]
750[29]
161916]
1260117]
770[4]
887119]
967[27]
1400128]
81o[29]
162216]
868119]

153816]
841119]
173816]
963119]
lO14127]

An

1500125]
1540125]
1560124]
113216]

790[ 4]

741119]

767[26]

154716]

918[ 4]

906119]

897[26]

162216]

980[ 4]

999119]

957[26]

969[27]

160116]
980119]
944[26]

Ni

2380[25]

2240[25]

2270[24]

2275{6]

1450[ 4]

1284119]

2988[6]

1580[ 4]

1535119]

3050121]

3076[6]
1730[ 4]

1733119]
1977127]

3068[6]

1702119]

Pd

2000[25]

169616]

1640117]

1220[ 4]

1050119]

224116]

1860117]

1370[ 4]

1249119]

2300[28]

2303[6]

1970117]

1490[ 4]

1366119]

1708127]

2500[28]

2297[6]

1345119]

Pt

2490[25]

2590[24]

171616]

1440[ 4]

1191119]

2368[6]

1650[ 4]

1476119]

2496[6]

1750[ 4]

1652119]

1681127]

2458[6]

1618119]

150616] 2905[6] 217216] 2307[6]

954119] 1654119] 1312119] 1573119]

175816]
1090119]

1028127]

331016]

1878119]

2082[27]

2478[6]

1465119]

1890127]

271416]

1814119]

1777127]

116516] 2228[6] 153316] 149016] 2892[6] 215716] 228116]

1433119] 823119] 936119] 1619[19] 1291119] 1541119]

137916] 2529[6] 173116] 173416] 3288[6] 2463[6] 267116]

977[27] 1510127] 992[27] 999[27] 2029[27] 1851127] 1734127]

Table 5 : Experimental (Exp.) and theoretical surface energies for fcc metals.
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Face

Exp.

(110)

(100)

(211)

(111)

Fe W

2410125]
2360[25]
2370[24]

170416]

1210132]

1710133]

1720134]

3353[6]
3100121]
1310132]
1440133]
1950134]
1693116]

213116]

2390[6]
5340[33]
2630[34]

2800131]
2830[36]
3250[25]
2990[25]
307O[24]
3258[6]
2683[30]
3480[32]
3320[33]
7740[34]
3240[35]
58o816]

51oo[2o]
4950[38]

3252[30]
372o[32]
4680[33]
7770[34]

3590[35]
3047137]
2926[16]

3932[6]

3224[30]

4290[6]

3510130]

8130133]

8430[34]

2350[35]

Table6 : Experimental (Exp.) and theoreticalsurfaceenergiesfor bcc metals.
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Pd

Pd

Ag

Ag

DFT

Ref. 17

FLAPW

Ref. 28

a111 1.64

oloo 1.86 2.3

0-11o 1.97 2.5

7100-111

7110--111

71oo-11o

0-111

0-100

O'110

1.13

1.20

0.94

1.21

1.21

1.26

1.00

1.04

0.96

7100-111

7110-111

71oo-11o

0.92

1.3

1.4

0.93

FS

Ref. 29

0.62

0.76

0.81

1.22

1.31

0.94

I EAMRef. 4 I

1.22

1.37

1.49

1.12

1.22

0.92

0.62

0.71

0.77

1.14

1.24

0.92

EAM

Ref. 19

1.05

1.25

1.37

1.19

1.30

0.91

0.65

0.79

0.89

1.21

1.37

0.89

Table 7: Comparison of ECT surface energies (in erg/cm 2) for Pd and

ECT

1.69

2.24

2.30

1.32

1.36

0.97

1.22

1.58

1.62

1.29

1.33

0.97

Ag with results of

full-potentialLAPW calculations(ref.17),Finnis-Sinclair(ref.29) and EAM (refs.4, 19)

semiempiricalresults.0"hktdenotes the surfaceenergy of the (hkl) surfaceand 7h_l-htI'

denotes the ratiobetween 0"hk: and 0"hk:'-

Ag

Pd

G_U2"

(100) 1613
(110) 1660
(111) 1250

(100) 2300

(110) 2380

(111) 1750

Ref. 17
1220 1210

1440 1260

1200 1210

1800 1860

2090 1970

1700 1640

Table8: Comparison of the surface energies (in erg/cm 2) of the low-index faces of Ag and

Pd obtained with ECT and first-principles calculations (ref. 17).
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Fig. 1: (a) Scaled binding energy per atom of a crystal as a function of interatomic

separation for representative solids. (b) Scaled binding energy versus scaled separation for

representative cases of cohesion, bimetallic adhesion, chemisorption and diatomic molecule.
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Q

Qe

r 0 f

Fig. 2: Graphical solution of eq. (9) (see text).

d

A 1

• X • X • j=l

81
X • X • X j=2

C1
• X • X • j=3

Fig. 3: Side view of a fcc (100) surface. Circles denote atoms on the plane of the page,

crosses indicate atoms one plane below or above. The index j labels the planes starting with

j = 1 for the surface plane.
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